The Phase Relations in the Yb_2O_3 –Fe $_2O_3$ –*MO* Systems in Air at High Temperatures (*M*: Co, Ni, Cu, and Zn)

NOBORU KIMIZUKA* AND EIJI TAKAYAMA

National Institute for Research in Inorganic Materials, 1-1, Namiki, Sakuramura, Niiharigun, Ibaraki-ken 305, Japan

Received August 24, 1981; in revised form November 13, 1981

The phase relations in the Yb₂O₃-Fe₂O₃-CoO system at 1350 and 1300°C, the Yb₂O₃-Fe₂O₃-NiO system at 1300 and 1200°C, the Yb₂O₃-Fe₂O₃-CuO system at 1000°C, and the Yb₂O₃-Fe₂O₃-ZnO system at 1300°C were determined in air by means of a classical quenching method. New layered-type compounds, YbFeCoO₄ (a = 3.4295(5) Å, c = 25.198(3) Å), YbFeCuO₄ (a = 3.4808(2) Å, c = 24.100(2) Å), and YbFeZnO₄ (a = 3.4251(2) Å, c = 25.282(2) Å), which are isomorphous with YbFe₂O₄ (space group: $R\bar{3}m$; a = 3.455(1) Å, c = 25.109(2) Å), and a new compound, Yb₂Cu₂O₅, were obtained. In the Yb₂O₃-Fe₂O₃-NiO system, there are no quaternary compounds.

Introduction

In the phase diagrams of the Ln_2O_3 - $FeO-Fe_2O_3$ systems at 1200°C (*Ln*: Y, Ho, Er, Tm, Yb, and Lu), there are $LnFe_2O_4$ compounds with layered structures and their standard free energies of formation were reported by Kimizuka and Katsura and co-workers (1-3). As an example, the phase diagram of the Yb₂O₃-FeO-Fe₂O₃ system at 1200°C is illustrated with equilibrium oxygen partial pressures in Fig. 1(2). The crystal structure analyses of YbFe₂O₄ and Yb₂Fe₃O₇ were performed by Kato et al. (4-5). Recently Kimizuka and Takayama prepared a series of new compounds $LnA^{2+}B^{3+}O_4$ (A: Mg, Mn, Co, Cu, and Zn; B: Fe, Ga, and Al) which are isomorphous Bwith YbFe₂O₄, and reported the lattice constants and the synthetic conditions of about 50 compounds (6-7).

In the present article, we report the

phase diagrams of the Yb₂O₃-Fe₂O₃-CoO system at 1350 and 1300°C, the Yb₂O₃-Fe₂O₃-NiO system at 1300 and 1200°C, the Yb₂O₃-Fe₂O₃-CuO system at 1000°C, and the Yb₂O₃-Fe₂O₃-CuO system at 1300°C. Each phase diagram was determined in air by means of a classical quenching method.

Experimental

Starting materials. Yb₂O₃(99.9%), Fe₂O₃ (99.9%), and reagent-grade Co₂O₃, ZnO, NiO, and CuO were used. Prior to use, Yb₂O₃, Fe₂O₃, Co₂O₃, and ZnO were heated in air at 1300°C for several days. CoO was obtained by reduction of Co₂O₃ (8). NiO was heated in air at 1200°C for 3 days. CuO was heated at 1000°C in air for 3 days. CuO was heated at 1000°C in air for 3 days (9). Each of the heat-treated samples was identified from the ASTM cards. The pretreated starting materials were thoroughly mixed to the desired ratios in an agate mortar with ethyl alcohol.

Instruments. A Pt crucible was used as

^{*} To whom correspondence should be addressed.

^{0022-4596/82/040022-06\$02.00/0} Copyright © 1982 by Academic Press, Inc. All rights of reproduction in any form reserved.

FIG. 1. The phase diagram of the Yb₂O₃-FeO-Fe₂O₃ system at 1200°C. Numbers in the three solid phases indicate the equilibrium oxygen partial pressure in log $P_{O_8}(\text{atm})$. See Ref. (2) for detail.

a sample container. Two vertical-type quench furnaces with heating elements of SiC and Rh-alloyed Pt were used. Both furnace temperatures were controlled to within $\pm 1^{\circ}$ C. Temperature measurement was made by a Pt-13%RhPt thermocouple calibrated on the gold point. The constant temperature region was about 3 cm long for each furnace. The phase diagrams at 1350 and 1300°C were determined in the SiC furnace and those at 1200 and 1000°C were made in the Pt furnace.

Procedure. About 1000 mg of each sample was placed in a Pt crucible and was heated in the furnace. After heating for 24 hr, the sample was quenched to room temperature and crushed in an agate mortar. The samples were then analyzed by means of powder X-ray diffraction. (Fe $K\alpha$ radia-

tion, a Mn-filtered scintillation counter, and silicon powder as a standard material were used.) This procedure was repeated until the powder X-ray pattern of the sample did not change. It took 7–10 days for the sample to react fully. Sample weights were checked before and after heat treatments.

Results and Discussion

1a. The Yb_2O_3 - Fe_2O_3 -CoO System at 1350°C in Air

In the Yb₂O₃-Fe₂O₃ system, there were two ternary stable phases, YbFeO₃ and $Yb_3Fe_5O_{12}$. The reaction rates between Yb₂O₃ and Fe₂O₃ necessary to form these two compounds were so large that each single phase was obtained within 2 days. Schneider et al. (10) reported the phase diagram of the Yb₂O₃-Fe₂O₃ system at 1350°C in air. Their results are consistent with the present study. In the Fe₂O₃-CoO system, Fe₂CoO₄ was a stable phase. In the Yb₂O₃-CoO system, there were no ternary phases. In the Yb₂O₃-Fe₂O₃-CoO system, there was a stable quaternary YbFeCoO₄. YbFeCoO₄ (a = 3.4295(5) Å, c = 25.198(3)Å) is isomorphous with YbFe₂O₄ (space group: $R\bar{3}m$; a = 3.455(1) Å, c = 25.109(2)Å) (6). No solid solution range in each phase was detected. The phase diagram of the Yb₂O₃-Fe₂O₃-CoO system at 1350°C in air is shown in Fig. 2a.

1b. The Yb_2O_3 -Fe $_2O_3$ -CoO System at 1300°C in Air

In the Yb₂O₃-Fe₂O₃ system, the Fe₂O₃-CoO system, and the CoO-Yb₂O₃ system, there were the same phases as in those at 1350°C. In the Yb₂O₃-Fe₂O₃-CoO system, there were no stable quaternary phases. After the first heating of the mixtures in the Yb₂O₃-Fe₂O₃-CoO system, the YbFeCoO₄ phase was observed in the powder X-ray pattern but totally disappeared after repeated heating. The YbFeCoO₄ phase pre-

FIG. 2a. The phase diagram of the $Yb_2O_3-Fe_2O_3-CoO$ system at 1350°C in air. (A) YbFeO₃, (B) Yb_3Fe_5O_{12}, (C) Fe₂CoO₄, and (D) YbFeCoO₄.

pared at 1350°C was reheated at 1300°C for 1 week and decomposed to YbFeO₃ and CoO. We concluded that YbFeCoO₄ was unstable at 1300°C in air. In the previous study (3), we reported the phase diagrams of the Ln_2O_3 -FeO-Fe₂O₃ systems at high temperatures, and concluded that the $LnFe_2O_4$ phases appeared as stable ones above certain temperatures. We may conclude that each $LnFeMO_4$ compound is stable above some temperature.

FIG. 2b. The phase diagram of the $Yb_2O_3-Fe_2O_3-CoO$ system at 1300°C in air. (A) $YbFeO_3$, (B) $Yb_3Fe_5O_{12}$, and (C) Fe_2CoO_4 .

No solid solution range was detected for any phases at 1300°C. The phase diagram of the Yb₂O₃-Fe₂O₃-CoO system at 1300°C in air is shown in Fig. 2b.

2. The Yb_2O_3 - Fe_2O_3 -NiO System at 1300 and 1200°C in Air

In the Yb_2O_3 -Fe₂O₃ system, there were two phases, YbFeO₃ and Yb₃Fe₅O₁₂. In the Fe_2O_3 -NiO system, there was one stable Fe_2NiO_4 phase. In the NiO-Yb₂O₃ system, there were no ternary stable phases. In the Yb₂O₃-Fe₂O₃-NiO system, there were no quaternary stable phases. As already mentioned (6), however we heated the mixture of Yb_2O_3 : Fe₂O₃: NiO = 1 : 1 : 2 (mole ratio) until the melt phase appeared, no YbFe NiO₄ could be obtained. So, the phase relations in the Yb₂O₃-Fe₂O₃-NiO system at 1300 and 1200°C may not change in the temperature region in which a melt phase does not appear. The phase diagram of the Yb₂O₃-Fe₂O₃-NiO system at 1300 and 1200°C in air is shown in Fig. 3. No detectable solid solution range exists for any of the phases.

3. The Yb₂O₃-Fe₂O₃-CuO System at 1000°C in Air

In the
$$Yb_2O_3$$
-Fe₂O₃ system, a single

FIG. 3. The phase diagram of the $Yb_2O_3-Fe_2O_3-$ NiO system at 1300 and 1200°C in air. (A) YbFeO₃, (B) $Yb_3Fe_5O_{12}$, and (C) Fe_2NiO_4 .

phase of YbFeO₃ was obtained easily even at 1000°C. In contrast to this, the mixture of Yb_2O_3 : $Fe_2O_3 = 3:5$ (mole ratio), when heated for a month, resulted only in a trace of the Yb₃Fe₅O₁₂ phase in the powder X-ray pattern. The Yb₃Fe₅O₁₂ prepared at 1300°C was reheated at 1000°C for 1 month. No decomposition to YbFeO₃ and Fe₂O₃ was observed. Moreover, when the mixtures of $Yb_2O_3: Fe_2O_3: CuO = 15:70:15, Yb_2O_3:$ $Fe_2O_3: CuO = 15:55:30$, and $Yb_2O_3:$ Fe_2O_3 : CuO = 30:55:15 (mole ratio) were heated for 15 days, the mixtures Fe₂O₃, Fe₂CuO₄, and Yb₃Fe₅O₁₂; Fe₂CuO₄ and Yb₃Fe₅O₁₂; and Yb₃Fe₅O₁₂, Fe₂CuO₄, and YbFeO₃ were, respectively, obtained.

TABLE I Powder X-Ray Data for Yb₂Cu₂O₅

d _{obsd} (Å)	I (%)	d _{obsd} (Å)	I (%)
6.168	4	1.6537	1
4.912	12	1.6388	18
4.046	50	1.6205	1
3.306	1	1.5848	13
3.262	26	1.5803	15
3.159	2	1.5683	10
3.085	9	1.5461	2
2.8901	27	1.5426	5
2.8148	100	1.5349	5
2.6749	80	1.5187	5
2.6345	60	1.5054	19
2.6188	24	1.4826	3
2.5594	3	1.4792	4
2.4270	3	1.4731	7
2.3649	4	1.4443	13
2.2975	3	1.4353	6
2.2421	8	1.4099	5
2.1099	5	1.3628	2
2.0566	12	1.3537	2
1.9997	46	1.3371	2
1.9213	5	1.3324	7
1.8791	34	1.3179	4
1.8158	8	1.3095	4
1.7678	1	1.2735	2
1.7434	23	1.2556	8
1.7160	15	1.2465	9
1.6943	2	1.2235	3
1.6757	7	1.2029	2

FIG. 4. The phase diagram of the $Yb_2O_3-Fe_2O_3-CuO$ system at 1000°C in air. (A) $YbFeO_3$, (B) $Yb_3Fe_5O_{12}$, (C) Fe_2CuO_4 , and (D) $YbFeCuO_4$ and $Yb_2Cu_2O_5$.

It was concluded, therefore, that $Yb_3Fe_5O_{12}$ was stable at 1000°C in air. The Fe_2CuO_4 phase was found in the Fe_2O_3 -CuO system, and in the CuO-Yb₂O₃ system there was one new ternary Yb₂Cu₂O₅ phase. In order to assure stoichiometry of this new phase, the weight of a mixture of Yb₂O₃: CuO = 1:2 (mole ratio) was checked during the heat treatment, and we concluded that no decomposition of CuO to Cu₂O and oxygen gas occurred in the process and the stoi-

FIG. 5. The phase diagram of the $Yb_2O_3-Fe_2O_3-$ ZnO system at 1300°C in air. (A) YbFeO₃, (B) Yb_3Fe_5O_{12}, (C) Fe₂ZnO₄, and (D) YbFeZnO₄.

Ħ	
щ	
81	
R	
<u> </u>	

The Phase Relations in the $Yb_2O_3-Fe_2O_3-MO$ Systems in Air at High Temperatures

	Composition		Time		Composition		Time
System	(mole ratio)	Phase"	(day)	System	(mole ratio)	Phase ^a	(day)
$Yb_2O_3-Fe_2O_3-CoO$	55:25:20	1-1-3, Yb ₂ O ₃ , 1-1-1-4	7	Yb ₂ O ₃ -Fe ₂ O ₃ -ZnO	50:20:30	Yb ₂ O ₃ , 1–1–3, 1–1–1–4	5
at 1350°C	30:10:60	1-1-1-4, CoO, Yb ₂ O ₃	7	at 1300°C	20:10:70	Yb ₂ O ₃ , 1–1–1–4, ZnO	ŝ
	10:30:60	1-1-1-4, 2-1-4, CoO	7		10:30:60	1-1-1-4, ZnO, 2-1-4	S
	20:40:35	1 - 1 - 1 - 4, 2 - 1 - 4, 1 - 1 - 3	٢				
	30:55:15	1 - 1 - 3, $3 - 5 - 12$, $2 - 1 - 4$	7		25:40:35	1-1-3, $1-1-1-4$, $2-1-4$	Ś
	15:70:15	$3-5-12$, $2-1-4$, Fe_2O_3	7		25:55:20	3-5-12, 1-1-3, 2-1-4	Ś
	25:25:50	1-1-1-4	7		15:70:15	$3-5-12$, $2-1-4$, Fc_2O_3	ŝ
$Yb_2O_3-Fe_2O_3-CoO$	30:10:60	Yb ₂ O ₃ , 1–1–3, CoO	10		25:25:50	1-1-1-4	5
at 1300°C	10:30:60	1-1-3, 2-1-4, CoO	10	Yb ₂ O ₃ -Fe ₂ O ₃ -CuO	55:25:20	Yb ₂ O ₃ , 1–1–3, 2–2–5	17
	30:55:15	1-1-3, 3-5-12, 2-1-4	7	at 100°C	35:25:40	2-2-5, 1-1-1-4, 1-1-3	17
	15:75:15	$3-5-12$, $2-1-4$, Fe_2O_3	7		20:10:70	CuO, 1–1–1–4, 2–2–5	17
VEO ESO NIO	50 - 20 - 30	$Vh_{c}O_{c} = 1 - 1 - 3 N_{c}O_{c}$	٢		25:40:35	1-1-1-4, 2-1-4, 1-1-3	17
1 0203-FC203-INIO	15 - 30 - 55	NiO 1-1-3, 2-1-4			10:20:70	CuO, 2-1-4, 1-1-1-4	17
		1-1-3 3-5-12 2-1-4	10		30:55:15	3-5-12, 1-1-3, 2-1-4	17
1200 5	15-70-15	3-5-12 EP.O. 2-1-4	9 9		15:70:15	3-5-12, Fe ₂ O ₃ , 2-1-4	17
	11 - 0 - 11		24		10:0:20	2-2-5	15
					25:25:50	1-1-1-4	15

^a 1-1-3: YbFeO₃; 1-1-1-4: YbFeMO₄; 2-1-4: Fe₂MO₄; 3-5-12: Yb₃Fe₃O₁₂; 2-2-5: Yb₂Cu₂O₅ (M: Co, Ni, Cu, and Zn).

chiometry of the new phase was $Yb_2Cu_2O_5$. The *d*-spacings and relative intensities of the powder X-ray diffraction peaks are listed in Table I. The phase YbFeCuO₄ (*a* = 3.4808(2) Å, *c* = 24.100(2) Å), which is isomorphous with YbFe₂O₄, was found in the Yb₂O₃-Fe₂O₃-CuO system. The phase diagram of the Yb₂O₃-Fe₂O₃-CuO system at 1000°C in air is shown in Fig. 4. No solid solution range in any of the phases was detected.

4. The Yb_2O_3 -Fe₂ O_3 -ZnO System at 1300°C in Air

In the Fe₂O₃-ZnO system, there was an Fe₂ZnO₄ phase, and in the ZnO-Yb₂O₃ system, there was no stable ternary phase. In the Yb₂O₃-Fe₂O₃-ZnO system, the Yb FeZnO₄ phase existed as a stable one (a = 3.4251(2) Å, c = 25.282(2) Å). It was isomorphous with YbFe₂O₃-Fe₂O₃-ZnO system at 1300°C in air is shown in Fig. 5. No detectable solid solution range existed in each stable phase.

The data points which are necessary and sufficient for establishing the above phase diagrams are listed in Table II.

In conclusion, the phase relations in the $Yb_2O_3-Fe_2O_3-CoO$ system at 1350 and 1300°C, the $Yb_2O_3-Fe_2O_3-NiO$ system at

1300 and 1200°C, the Yb₂O₃-Fe₂O₃-CuO system at 1000°C, and the Yb₂O₃-Fe₂O₃-ZnO system at 1300°C were established in air. The YbFeCoO₄, YbFeCuO₄, and Yb FeZnO₄ phases are stable at 1350, 1000, and 1300°C, respectively. They are isomorphous with YbFe₂O₄. A new ternary Yb₂Cu₂O₅ compound was found in the Yb₂O₃-CuO system at 1000°C in air.

References

- N. KIMIZUKA AND T. KATSURA, J. Solid State Chem. 13, 176 (1975).
- 2. N. KIMIZUKA AND T. KATSURA, J. Solid State Chem. 15, 246 (1975).
- T. KATSURA, T. SEKINE, K. KITAYAMA, T. SU-GIHARA, AND N. KIMIZUKA, J. Solid State Chem. 23, 43 (1978).
- K. KATO, I. KAWADA, N. KIMIZUKA, AND T. KATSURA, Z. Kristallogr. 141, 314 (1975).
- K. KATO, I. KAWADA, N. KIMIZUKA, I. SHINDO, AND T. KATSURA, Z. Kristallogr. 143, 278 (1976).
- 6. N. KIMIZUKA AND E. TAKAYAMA, J. Solid State Chem. 40, 109 (1981).
- 7. N. KIMIZUKA AND E. TAKAYAMA, J. Solid State Chem. 41, 166–173 (1982).
- 8. B. FISHER AND D. S. TANNHAUSER, J. Electrochem. Soc. 111, 1194 (1964).
- A. M. M. GADALLA, W. F. FORD, AND J. WHITE, Trans. Brit. Ceram. Soc. 62, 57 (1963).
- S. J. SCHNEIDER, R. S. ROTH, AND J. L. WARING, J. Res. Nat. Bur. Stand. Sect. A 65, 369 (1961).